Back to Courses

True
False

### Using the quadratic formula, find the roots for the following equation $$x(10x - 1) = 2$$

$$x = \frac{1}{2}$$ or $$x = -\frac{2}{5}$$
$$x = \frac{3}{2}$$ or $$x = -\frac{2}{5}$$
$$x = \frac{1}{2}$$ or $$x = -\frac{4}{5}$$
$$x = \frac{1}{2}$$ or $$x = \frac{2}{5}$$

### Using the quadratic formula, find the roots for the following equation $$4x^2 + 3x - 27 = 0$$

$$x = \frac{1}{4}$$ or $$x = -3$$
$$x = \frac{9}{4}$$ or $$x = -3$$
$$x = \frac{9}{4}$$ or $$x = -2$$
$$x = \frac{9}{4}$$ or $$x = -1$$

### Using the quadratic formula, find the roots for the following equation $$15x^2 - 26x - 21 = 0$$

$$x = \frac{1}{3}$$ or $$x = -\frac{3}{5}$$
$$x = \frac{2}{3}$$ or $$x = -\frac{3}{5}$$
$$x = \frac{7}{3}$$ or $$x = -\frac{3}{5}$$
$$x = \frac{7}{3}$$ or $$x = -\frac{3}{7}$$

### Using the quadratic formula, find the roots for the following equation $$2x^2-7x=5$$

$$x = \frac{6\pm\sqrt{89}}{4}$$
$$x = \frac{5\pm\sqrt{89}}{4}$$
$$x = \frac{3\pm\sqrt{89}}{4}$$
$$x = \frac{7\pm\sqrt{89}}{4}$$

### Using the quadratic formula, find the roots for the following equation $$10x+4=3x^2$$

$$x = \frac{5\pm\sqrt{37}}{3}$$
$$x = \frac{5\pm\sqrt{35}}{3}$$
$$x = \frac{3\pm\sqrt{37}}{3}$$
$$x = \frac{3\pm\sqrt{37}}{3}$$

### Using the quadratic formula, find the roots for the following equation $$14=4x^2-6x$$

$$x = \frac{1\pm\sqrt{65}}{8}$$
$$x = \frac{3\pm\sqrt{65}}{8}$$
$$x = \frac{2\pm\sqrt{65}}{8}$$
$$x = \frac{3\pm\sqrt{61}}{8}$$

### Using the quadratic formula, find the roots for the following equation $$\frac{1}{6}x^2+\frac{4}{3}x-\frac{2}{3}=0$$

$$x = -4\pm 2 \sqrt{5}$$
$$x = -4\pm 2 \sqrt{3}$$
$$x = -4\pm 2 \sqrt{4}$$
$$x = -2\pm 2 \sqrt{2}$$